ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра общей и теоретической физики

Дисциплина: Электричество и магнетизм

Контрольная работа № 2

<u>Тема:</u> «Потенциал и энергия электрического поля. Электрическое поле диполя. Метод изображений. Пондеромоторная сила»

(пример контрольной работы)

Составил ассистент кафедры ОТФ СамГУ Филиппов Ю.П.

СамГУ-Самара 2004 год

Вариант № 1

- 1. Найти силу взаимодействия между точечным зарядом q и диполем малых размеров, если расстояние между ними равно d и дипольный момент \vec{p} направлен под углом α к прямой, соединяющей указанные объекты.
- 2. Тонкая бесконечная нить имеет заряд λ на единицу длины и расположена на расстоянии h параллельно проводящей бесконечной плоскости. Найти напряженность электрического поля в точке, отстоящей от проводящей плоскости на расстоянии h/2 и от плоскости, содержащей данную нить и перпендикулярной проводящей плоскости, на расстоянии h.
- 3. Длинный проводящий цилиндр радиуса R составлен из двух половин. Определить силу отталкивания F, действующую на единицу длины каждого полуцилиндра, если поверхностная плотность заряда постоянна и равна σ .

Вариант № 2

- 1. Найти величину и направление дипольного момента системы, представляющей собой равносторонний треугольник со стороной a, в вершинах которого находятся заряды q,q,-2q. Указание: при решении задачи использовать определение дипольного момента системы $(\vec{p} = \sum_{i=1}^{n} q_i \vec{r_i})$.
- **2**. На расстоянии h от проводящей бесконечной плоскости находится точечный заряд +q. Найти напряженность электричекого поля в точке, отстоящей от плоскости на расстоянии h/2 и от перпендикуляра, восстановленного из точки, где находится точечный заряд, на плоскость, на расстоянии h/2.
- 3. Найти энергию электрического поля, создаваемого бесконечным цилиндром радиуса R, равномерно заряженного по объему с плотностью ρ , в цилиндрическом слое единичной длины ($R_2 > R_1 > 0$), если:
- a) $R_1, R_2 < R$;
- 6) $R_2 > R_1 \ge R$.

Вариант № 3

- 1. Найти силу взаимодействия между двумя диполями малых размеров, если угол между дипольными моментами $\vec{p_1}$, $\vec{p_2}$ равен α , а расстояние равно d. Указание: при решении задачи использовать выражение для силы, действующей на диполь, находящийся во внешнем электрическом поле $\vec{F} = (\vec{p}\vec{\nabla})\vec{E}$.
- **2**. На расстоянии h от проводящей бесконечной плоскости находится точечный заряд +q. Найти напряженность электрического поля в точке отстоящей от плоскости на расстоянии h/2 и от перпендикуляра, восстановленного из точки, где находится точечный заряд, на плоскость, на расстоянии h.
- 3. Проводящая сфера радиуса R составлена из двух полусфер. Определить силу F, с которой отталкиваются эти полусферы, если поверхностная плотность заряда равна σ .

Вариант № 4

- 1. Найти величину и направление дипольного момента системы, представляющей собой квадрат со стороной a, на концах диагоналей которого, находятся пары зарядов $\{q, -q\}$, $\{2q, -2q\}$, соответственно. Указание: при решении задачи использовать определение дипольного момента системы $(\vec{p} = \sum_{i=1}^{n} q_i \vec{r_i})$.
- 2. Тонкая бесконечная нить имеет заряд λ на единицу длины и расположена на расстоянии h параллельно проводящей бесконечной плоскости. Найти напряженность электрического поля в точке, отстоящей от проводящей плоскости на расстоянии h/2 и от плоскости, содержащей данную нить и перпендикулярной проводящей плоскости, на расстоянии h/2.
- **3**. Найти энергию электрического поля, создаваемого шаром радиуса R, равномерно заряженного по объему с плотностью ρ , в сферическом слое $(R_2 > R_1 > 0)$, если:
- a) $R_1, R_2 < R$;
- 6) $R_2 > R_1 \ge R$.

Составитель: ассистент кафедры ОТФ	Ю.П. Филиппов.